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» Algorithm for solving Quadratic Forms
X2 —2y% = 41 » Recurrences
(Pythagoreans)
> Start with Xni1 = Xp + 2Yn
xx=1, y=1 Yn1 = Xn+ Yn
> We get
» Fundamental solution:
(x2,¥2) = (3,2) 1+v2
(x3,y3) = (7,5) Xn+ V2yn = (1 +\@)n

(X4,y4) (17 12)



Indefinite Quadratic Forms

> Q(x,y) =ax®+bxy +cy?, d=0b%>—4ac>0
» Which integers are represented by Q?

Q(x,y)=N, x,y,NeN

Equivalence of Quadratic Forms

Q ~ @ = they represent the same integers.

> X2 —2y% ~ —2x%2 4 y?

> x2—2y2 ~ x242xy — y? . < 0 —1 )

> (x+y)? -2y = (1 o0
X2 +2xy — y? T:<1 1)
Qx+y,y)=Q(x,y) 0 1
Qx—y,y)=Q(x.y)
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Class Numbers

h(d) = number of inequivalent forms of discriminant d.

h(d) | d=

1 5,8,12, 13,17, 21, 24, 28, 29, 33, 37, 41, 44, 53
2 40, 60, 65, 85, 104, 105, 120, 136, 140, 156, 165
3 229, 257, 316, 321, 469, 473, 568, 733, 761, 892

» D={d|d>0,d=0,1 (mod 4),d # O}

> x? — dy? = 4, fundamental solution (t, u)
_t+uVd
B 2

Gauss, Siegel (1944)

€d

2x3/2

Z h(d)loged:18 3 + O(x log x).
deD,d<x C( )

| 2
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Q(X, y) = aX2 + bX_y + C_y2 Quadratic Forms

az + bz+c=0& 2 = =bE/d 7 _ =b-vd

r T T 1
(-b-dA(1/2))/2a (~b+dA(1/2))/2a
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Q(X7 Y) = aX2 + be + C.y2 Quadratic Forms
az + bz+c=0& 2 = =bE/d 7 _ =b-vd

[

r T T 1
(-b-dA(1/2))/2a (~b+dA(1/2))/2a




Linear Fractional Transformations and
SL2(R)

T(z):ijis, ad — bc #0

maps circles to circles

=(2)-7@

S'—z(R)Z{v=<i Z),ad—bc:1}

acts on

Upper-half space
H={z=x+1iy,y >0}

> z 3 z+1

1
>z ——
z

=SLy(Z) = {y € SLx(R),a,b,c,d € Z}
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Upper-half space

2 2
H={z=x+iy,y >0} dszzdxy;zdy
2(t) = x() + (1), telab], L= [2yOROE g

Geodesics in the Upper Half Plane

I T T 1
(~-b-d"(1/2))/2a (-b+dr(1/2))/2a
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Fundamental Domains L
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zrwew=T(2), Terl
H/T the modular surface
Hyperbolic
surfaces

Figure: Fundamental domain of SL»(Z) and its translates
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t a
awx.y) = (MG M= (5, 72
Q~QeM=+My, ~eT. Soracos

t—bu
—Cu
Q—g= < 32u vy > er

where t> — du? = 4 and (t, u) is the fundamental
(smallest solution).
t+uvd

2
2. Most g € SL»(R) can be diagonalised

("9 )

Remarks: 1. g has eigenvalue ¢4 =




Pell’s Equation and Lengths of Closed
Geodesics

N(9) 1
| @ =inNig) = n()
1

[ = T
1 N
x

Theorem
The lengths of the closed geodesics for the hyperbolic

surface H/SLo(Z) are 2log e4 with multiplicity h(d),
deD.
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Closed geodesics ~.

Prime Geodesic Theorem Prime Number Theorem . ..q
> 7T(X) = {’Y, length (’y) <In X} > 7T(X) _ {p prime, p < X}Geodesncs
F(X)NL’ X — 00 71'()(),\_,77 X o o0
In x 0

» Class number distribution (Sarnak, 1982)

2

X’
> M)~ 3inx

deD,eg<x
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H2 2
2
A=-y <8x2+ 8y2>

. . Spectral Theory
Af =0« f is harmonic

Eigenvalue problem: Solve
Af = \f

Infinite Matrix, no determinant to compute eigenvalues.
| require f(vz) = f(z), v € T (automorphic form)



Duality between periods and eigenvalues

Eigenvalues of
Laplacian

Lengths of closed

geodesics




Duality between periods and eigenvalues

Lengths of closed
geodesics

Eigenvalues of
Laplacian




Duality between periods and eigenvalues

Lengths of closed
geodesics

Eigenvalues of
Laplacian

Simple trace formula

n n
(A= ai=>_ )
i= =

What is and how do | compute the trace of an operator?

Q>
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Prime Number Theorem Prime Geodesic Theorem
m(x) = {p prime, p < x} m(x) = {v,length () < Inx}
m(x) = li(x)+ O(xe~cVPex) m(x)—li(x) = O(x3*)
m(x) = li(x)+ O(x"/?log x) lwaniec O(x35/48)

) Luo-Sarnak  O(x7/19)
RH Sound-Young O(x25/36
Conjecture  O( x1/2+e)
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_ log p, n=p-,
An) = { 0, otherwise.
B(x) =Y A(n).
n<x
- Better
Cramer (1 922) approximations?

Assume RH.

(e

1 /A <¢(x)—x>2 1
ax — —, A— .
log A J X Zp:\plz
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Define . . petrid
. |Og N(PO)7 P — PO, . Petridis
Ar(P) = { 0, otherwise.
br(x)= > Ar(P).
N(P)<x
Theorem (Cherubini-Guerreiro 2017) Better

approximations?

w0 x ax = 0
A

Theorem (Balog-Biro—Harcos—Maga 2018)

1 2A

Y (¢r(x) — x)? dx = O(A”/°F)
A



More counting in hyperbolic space

Work by: A. Good, Parkkonen and Paulin,
Martin—-Mckee—Wambach, Tsuzuki, Lekkas—Petridis
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