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Pell’s Equation

I Algorithm for solving
x2 − 2y2 = ±1
(Pythagoreans)

I Start with

x1 = 1, y1 = 1

I We get

(x2, y2) = (3,2)

(x3, y3) = (7,5)

(x4, y4) = (17,12)

I Recurrences

xn+1 = xn + 2yn

yn+1 = xn + yn

I Fundamental solution:
1 +
√

2

xn +
√

2yn = (1 +
√

2)n
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Indefinite Quadratic Forms

I Q(x , y) = ax2 + bxy + cy2, d = b2 − 4ac > 0
I Which integers are represented by Q?

Q(x , y) = N, x , y ,N ∈ N

Equivalence of Quadratic Forms
Q ∼ Q′ ⇒ they represent the same integers.
I x2 − 2y2 ∼ −2x2 + y2

I x2−2y2 ∼ x2 +2xy−y2

I (x + y)2 − 2y2 =
x2 + 2xy − y2

Q(x + y , y) = Q′(x , y)
Q′(x − y , y) = Q(x , y)

I S =

(
0 −1
1 0

)
T =

(
1 1
0 1

)
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Class Numbers
h(d) = number of inequivalent forms of discriminant d .

h(d) d=
1 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 41, 44, 53
2 40, 60, 65, 85, 104, 105, 120, 136, 140, 156, 165
3 229, 257, 316, 321, 469, 473, 568, 733, 761, 892

I D = {d |d > 0,d ≡ 0,1 (mod 4),d 6= �}
I x2 − dy2 = 4, fundamental solution (t ,u)

εd =
t + u

√
d

2

Gauss, Siegel (1944)∑
d∈D,d≤x

h(d) log εd =
π2x3/2

18ζ(3)
+ O(x log x).

I

ζ(s) =
∞∑

n=1

1
ns , <(s) > 1.
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From Quadratic Forms to Hyperbolic
Geometry

Q(x , y) = ax2 + bxy + cy2

az2 + bz + c = 0⇔ z1 = −b+
√

d
2a , z2 = −b−

√
d

2a

(!b!d^(1/2))/2a

*

(!b+d^(1/2))/2a
x
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From Quadratic Forms to Hyperbolic
Geometry

Q(x , y) = ax2 + bxy + cy2
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√
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Linear Fractional Transformations and
SL2(R)

T (z) =
az + b
cz + d

, ad − bc 6= 0

maps circles to circles

γ =

(
a b
c d

)
→ T (z)

SL2(R) =

{
γ =

(
a b
c d

)
,ad − bc = 1

}
acts on

Upper-half space
H = {z = x + iy , y > 0}
I z → z + 1

I z → −1
z

Γ = SL2(Z) = {γ ∈ SL2(R),a,b, c,d ∈ Z}
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Upper-half space

H = {z = x + iy , y > 0} ds2 =
dx2 + dy2

y2

z(t) = x(t) + iy(t), t ∈ [a,b], L =
∫ b

a

√
x ′(t)2+y ′(t)2

y(t) dt

Geodesics in the Upper Half Plane

(!b!d^(1/2))/2a
x

(!b+d^(1/2))/2a
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Fundamental Domains

z ∼ w ⇔ w = T (z), T ∈ Γ
H/Γ the modular surface

T 1F TF

T 1JF TJF

T 2UTF UTFU2FT 1UTFT 1U2F

JF

F

0 11

TU2F

1

Figure: Fundamental domain of SL2(Z) and its translates
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Equivalence of Quadratic forms and
SL2(R)

Q(x , y) =
(x

y

)tM
(x

y

)
M =

(
a b/2

b/2 c

)
Q′ ∼ Q ⇔ M ′ = γtMγ, γ ∈ Γ.

Q → g =

( t−bu
2 −cu

au t+bu
2

)
∈ Γ

where t2 − du2 = 4 and (t ,u) is the fundamental
(smallest solution).

Remarks: 1. g has eigenvalue εd =
t + u

√
d

2
2. Most g ∈ SL2(R) can be diagonalised

g ∼
(

N(g)1/2 0
0 N(g)−1/2

)
.
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Pell’s Equation and Lengths of Closed
Geodesics

1

x
1

N(g)

N(g)

∫ N(g)

1

1
y

dy = ln N(g) = ln(ε2d )

Theorem
The lengths of the closed geodesics for the hyperbolic
surface H/SL2(Z) are 2 log εd with multiplicity h(d),
d ∈ D.
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Distribution Closed geodesics of H/Γ

Closed geodesics γ.

Prime Geodesic Theorem
I π(x) = {γ, length (γ) ≤ ln x}
π(x) ∼ x

ln x
, x →∞

Prime Number Theorem
I π(x) = {p prime,p ≤ x}
π(x) ∼ x

ln x
, x →∞

I Class number distribution (Sarnak, 1982)

∑
d∈D,εd≤x

h(d) ∼ x2

2 ln x
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The Laplace Operator

∆ = −y2
(
∂2

∂x2 +
∂2

∂y2

)
∆f = 0⇔ f is harmonic

Eigenvalue problem: Solve

∆f = λf

Infinite Matrix, no determinant to compute eigenvalues.
I require f (γz) = f (z), γ ∈ Γ (automorphic form)
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Tr(A) =
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aii =
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j=1

λj

What is and how do I compute the trace of an operator?
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Error in PNT and PGT

li(x) =

∫ x

2

1
log t

dt

Prime Number Theorem
π(x) = {p prime,p ≤ x}
π(x) = li(x) + O(xe−c

√
log x )

π(x) = li(x) + O(x1/2 log x)
m

RH

Prime Geodesic Theorem
π(x) = {γ, length (γ) ≤ ln x}
π(x)− li(x) = O(x3/4)

Iwaniec O(x35/48)

Luo-Sarnak O(x7/10)

Sound-Young O(x25/36)

Conjecture O(x1/2+ε)
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Results for ψ(x)

Λ(n) =

{
log p, n = pk ,

0, otherwise.

ψ(x) =
∑
n≤x

Λ(n).

Cramér (1922)
Assume RH.

1
A

∫ A

2

(
ψ(x)− x√

x

)2

dx = O(1)

1
log A

∫ A

2

(
ψ(x)− x

x

)2

dx −→
∑
ρ

1
|ρ|2 , A→∞.



Counting in
hyperbolic space:

number theory
and geometry

Y. Petridis

Quadratic Forms

Hyperbolic
surfaces

Closed
Geodesics

Spectral Theory

Better
approximations?

Recent results
Define

ΛΓ(P) =

{
log N(P0), P = Pk

0 ,
0, otherwise.

ψΓ(x) =
∑

N(P)≤x

ΛΓ(P).

Theorem (Cherubini–Guerreiro 2017)

1
A

∫ 2A

A
(ψΓ(x)− x)2 dx = Oε(A5/4+ε)

Theorem (Balog–Biró–Harcos–Maga 2018)

1
A

∫ 2A

A
(ψΓ(x)− x)2 dx = Oε(A7/6+ε)
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More counting in hyperbolic space
There is exactly one such common perpendicular in every homotopy class of paths starting
from D� and ending in D+, where during the homotopy the origin of the path remains in
D� and its terminal point remains in D+. In particular, there are at most countably many
such common perpendiculars, and at most finitely many when their length is bounded.

Even when N is a closed hyperbolic surface and D�, D+ are simple closed geodesic
(see the picture below), the result (see Equation (4)) was not known before appearing in
[PaP6].

v�↵

v+
↵

N
D+

D�

↵

We give in Subsection 4.1 (refering to [PaP6] for complete statements and proofs) an
asymptotic formula as t ! +1 for the number of common perpendiculars of length at
most t from D� to D+, and an equidistribution result as t ! +1 of the initial and
terminal tangent vectors v�↵ and v+

↵ of these common perpendiculars ↵ in the outer and
inner unit normal bundles of D� and D+, respectively. Although we do use Margulis’s
mixing ideas, major new techniques needed to be developed to treat the problem in the
generality considered in [PaP6], some of them we will indicate in Subsection 4.1.

Here is a striking corollary of Theorem 15 in a very different context, that apparently
does not involve negative curvature dynamics or geometry. Let � be a geometrically finite
discrete subgroup of PSL2(C) (acting by homographies on P1(C) = C [ {1}). Assume
that � does not contain a quasifuchsian subgroup with index at most 2, and that its limit
set ⇤� is bounded and not totally disconnected in C. These assumptions are only here
to ensure that the domain of discontinuity ⌦� = (C [ {1}) � ⇤� of � has infinitely
many connected components (only one of them unbounded). The following result gives a
precise asymptotic as ✏ tends to 0 on the counting function of the (finite) number of these
connected components whose diameter are at least ✏.

The multiplicative constant has an explicit value, that requires some more notation,
and does involve hyperbolic geometry. We denote by (⌦i)i2I a family of representatives,
modulo the action of �, of the connected components of ⌦� whose stabilisers have infinite
index in �. For every i 2 I, let C⌦i be the convex hull of ⌦i in the upper-half space
model of the 3-dimensional real hyperbolic space H3

R, and let ��C⌦i
be the (inner) skinning

measure of C⌦i for �. We also denote by HB1 the horoball in H3
R consisting of points

with vertical coordinates at least 1, and by �+
HB1 its (outer) skinning measure for �.

Corollary 13 (Parkkonen-Paulin) Let � be a geometrically finite discrete group of
PSL2(C), with bounded and not totally disconnected limit set in C, which does not contain
a quasifuchsian subgroup with index at most 2. Assume that the Hausdorff dimension � of
the limit set of � is at least 1

2 . Then there exists  > 0 such that the number of connected
components of the domain of discontinuity ⌦� of � with diameter at least ✏ is equal, as

20

Work by: A. Good, Parkkonen and Paulin,
Martin–Mckee–Wambach, Tsuzuki, Lekkas–Petridis
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